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THE THREE-DIMENSIONAL FLOW PAST A RAPIDLY
ROTATING CIRCULAR CYLINDER

James P. Denit7a
School of Mathematics

University of New South Wales
AUSTRALIA

and
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ABSTRACT

The high Reynolds number (Re) flow past a rapidly rotating circular cylinder is inves-
tigated. The rotation rate of the cylinder is allowed to vary (slightly) along the axis of the
cylinder, thereby provoking three-dimensional flow disturbances, which are shown to involve
relatively massive (O(Re)) velocity perturbations to the flow away from the cylinder surface.

Additionally, three integral conditions, analogous to the single condition determined in
two dimensions by Batchelor (1), are derived, based on the condition of periodicity in the
azimuthal direction.
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1 Introduction

One of the most important and fundamental theorems of Flhuo .Mechanic, 1( lihve beel
developed in relatively recent times is the closedi silreamli nie t heory of Blatchelor (l). Tis
states that in a two-dimensional flow involving closed streanlines

J/curl ,,. • = 9.()

where L, is the vorticity and ds the line element along a streamline At large RHen'htold,
numbers, when viscous effects can be neglected, this condition. takeL with thle invisid
(Euler) equations of motion, leads to the result that the vorticitv is constant withbin a regio
of closed streamlines.

This theorem was generalised by Blennerhassett (2) to the situation which, rather than
being one of closed streamlines, involves helical streamlines. Specifically a three-dimensional
flow with three velocity components, all of which are independenlt of the axial direction: this
implies constant axial pressure gradient. This analysis. in addition to confirming Batchelor's
(1) result, leads to an additional result linking the constant axial pressure gradient and the
viscous terms. This result, taken in conjunction with the inviscid flow equations yields the
result that the axial velocity must be proportional to the streamfunction for the motion in
the plane normal to the axial vector.

Little progress appears to have been made in further extending the ideas of Batchelor
(1) into the three-dimensional regime, in spite of the importance of flows of this type. It is
the aim of this paper to address this issue.

Two-dimensional flows involving closed streamlines involve additional iiteresting sub-
tleties. Even though the work of Batchelor (1) involves the inclusion of (small) viscous
effects, there is insufficient flow physics in the constant vorticity result to actually determine
its value. This must be determined by recourse to boundary-layer regions located on body
surfaces. Riley (3) presented an example of two-dimensional flow inside an elliptic container.
driven by slippage of the container walls. By Batchelor's (1) theorem the flow in the core of
the container must be that of uniform vorticity, and Riley (3) showed how just one particular
value of the vorticity produced the appropriate b-haviour (exponential decay at the outer
edge) inside the wall boundary layers. These ideas have subsequently been extended by other
authors to other situations (see below), including situations involving two wall layers, see
Duck (4).

One of the classical results of potential-flow theory is that of uniform flow past a circular
cylinder, with superimposed circulation. Physically this circulation may he caused b)v the
rotation of the cylinder. A number of authors have studied the relationship bet ween tlie rate
of rotation and this circulation. Glauert (5) considered the large Reynolds number, large
rotation rate problem, whilst Moore (6) considered the finite Reynolds imnl)er, large rot at ion
rate problem. Lc." (7) and Ingham (8) have considered flly numerical solutions (finite
Reynolds numbers, finite rotation rates), wh'ilst Nikolayev (9). Negoda and Sychev (10).
Sychev (11), Lam (12) have investigated the large Reynolds urn ii oer (finite rotation rate)
problem, partly using the ideas of Riley (3). There aplpears to be a monotonic relationsliitp
between rotation rate and circulation, and the simple model of oiter, potential flow togelther

with a unidirectional boundary layer ; ,h -.'',,. ,; e for rt V , ,a .



value. As this critical value is approached, a stagn at ion point torm is off t lit snrfa<u of t I<'

cylinder wall, but inside the bouindarl layer: tils is sItflici,'iit to disrupt 1le. ,'-10" lte odt,'l at
lower values of rotation rate.

In this paper we coonsider a t hre-d(imiesional aiial,•goi' of tle above pr•,bini. We• take

a uniform, straight circular cyvlihder. and a ititiforilt flow far frtim tdie cVliiler directc't

perpetdicidar to the axis of the cvyliidhr, and tle t'vii tider surfac• is rotatling, with a la p.

angular velocity. which is dependent on axial local ion. We fulrther suppose t hat tli l{b,'ynold

number (ais defined in Section 2) is large. The restrict ion on large angular ,locityid retders

the problem tractable to analytic teclhIniqlues, whilst piointitng liev way in wlich (Iiore t~eir:l

rotation rates may be tackled. This analysis is presente(d in Sect<ion 3, and the correspoiidifii

numerical results are in Section 4. I1i Section 5 we formulate thriee integral c'on1ditions.

analogous to the condit.ion of Bathe'lohr (1) descri bed above. III Sect.hion (i we pl'sen't our
conclusions.



2 Formulation

We take a straight circular cylitder of radius (1. toget lIer wit II polar cord'II i aties (ar. 0. a z).
with r measured ra(dially. 0 azinmithallv in anl anti -cl(ckwise directio l and z axially. The
surface of the cvlinder is rotating with angular velocily A' + cos Az. where , and A\ are
constants. Referred to the coordinate systein described above, wt. suppose that far fli i 11hec
cylinder the fluid velocity takes the form i'l U(cos 9. - sill 0. 0). The flow ieynioldhs t. ini, her is
defined by

Re - (2)

I,

where v is the kinematic viscosity of the fluid (assumed constant). In this paper we are
primarily interested in the regime Re >> 1.

Two further non-dimensional parameters ma" l)e defined, namely

Q 4J (3)O(K)

and
~) (1()

describing the rate of rotation and (degree of three-dimensionality introdiced into the prob-
lem.

To make further progress in this paper, we assume that 1( 1 and( further that 11-1 >> I
(but that c = o(Q-P )). Thus we focus our attention on small amounts of three-dimisionality
and high rotation rates.

We write the velocity vector as U1u, and the pressure as p.'.,p, ) where p is the density
of the fluid (assumed constant). We then develop the solution in powers of -, nauiely

U = uO +(a+ O(W), (5)

P = Po + C3 + 0((2). (6)

For r - 1 = 0(1), when Re >> I we assume the basic flow takes the form

uO cos (- ,-sin ( 1 + +-),+ , (7)

this being merely the potential flow solution. There also exists a boundary laver wherein
r - I = O(Re- 1/2). The problem for u0 in the boundary layer has been stinlied in the past
by a number of authors, as noted in the previous section, however as Q-, X,

U0 -4 (0, f0) + 0(l) (S)

for r, - 1 == O(fe-1/2).
The full problem for fU is

V •i=0, (f)

6 Vu(' + I(,.- -fi= -V) + I V 2I. (It)I
Re



with the following boundary conditions

f= (0, cosAz,O) on 7= I, (1t)

fj 0 as rI-+. (12)

In the following section we consider the solution of (10) as Q and Re -+ 0,0.



3 The limits R,(, -* oc, Q --00 c

Since the perturbation velocity 6 is triggered by an 0(1) amount (see (11)) it is tempt nK
to speculate that this in turn will lead to general perturbation quantities away frotmn the
cylinder of 0(1). However this is certainly not the case. It turns out that the only pjlausible
solution for r = 0(1), i.e. the only asymptotic development that leads to self-col>i'teIin'v
involves magnitudcs very much larger than 0(1).

Considering first the solution for r - I = O(1), then on account of the tilwarityv f tlIe
system (9), (10), we may write

fi = (u(., o) cos Az, u(,, o) cos Az, ,(,. 0) sin Az), (l3)

fi = p(r,O)cosAz. (14)

We also have (see (7)) that as Re -+ c,

Uo --4 (IVo, QU 0 0 + U 01,0). (15)

where

Uoo = 1/i,

= -- 2 ) Cos 0.

U0I= I +~ 142) sill 9. (16)

The only meaningful series development of the perturbation velocities turns out to be

v = QRevo(r)+...+ Revi(r,,0)+.-.,

u = Reu 1 (r,,0)+...+ u((r)+...,

w = 0 Rewo((r) + - Rew,(r,,) +*..

p = fl Repo(r.0) +... + Op, (r) + .... (IT)

These expansions prove to be the key to the solution of our problem, although a priori, it
is difficult to justify these expansions, and so a postcriori verification is therefore necessary.
In Sect ,:hi 5, some prima facic justification for this form of solution development is given.

Consider now the leading order terms in (17) that are independent of 0. It. turns out,
perhaps surprisingly, that the flow is not governed by the inviscid Euler equations. but
rather is predominantly viscous in nature. Taking O(Q) terms in the radial momentllun
equation yields the following equation

2u 2 _ dp IVo
r 2  

- + VO•r + -. or - A 2 vo

The O(Re-l) terms in the azimuthal momentum equation yield

1 U2
U2r, ± -Ua - A2u2  - = 0,

, 7.2 r



whilst the O(Q) terms in the axial imo•enltulm equation yield

W7rr + W.- A -A uyt) =-AJ) (20)
7"

The continuity equation, to leading order. may be written

Vor + It'o + Nw0 = 0. (21)
7'

With this system there is no difficulty in imposing the full and correct boundary condi-
tions; wo therefore have

vO(r I) = Vo(?' = ) =0,

u2(r 7 ) 1, (22)

with
Vo, WO, U2 ---1 0 as r -- o0. (23)

The solution for u 2 can be written in terms of Bessel functiois, namely

2 K (Ai-) (24)

= Kj(A)

whilst it is possible to eliminate w0 and pi, from (18), (20), (21) to viehl

vo +-o (- + 2A) vo

r3 r o+ (A r2 r4) -V 72  _(25)

to which the following additional (alternative) boundary condition is appropriate

v0(7 = 1) = 0. (26)

Once u-2 is determined, it is quite straightforward (although a numerical task) to deter-
mine vo(r), wO(r); numerical results will be presented in the following section. It is worth
noting that v0 , u 2 and w0 , as described above, also represent an exact solution of the lin-
earised Navier Stokes equations ((9), (10)) in the absence of tile uniform flow.

We now turn to consider the leading order terms in (17) that are dependent upon both
r and 9 and which are, indeed, determined primarily through inviscid equat ions. Again, the
linear nature of (9), (10) greatly simiplifies the solution technique. this tilme allowing us to
write

III = ITT (r) sin 0,

"W1 = (r) sin 0.

PIo = 1(r) COs 0. (27)

6i



We may also write

Vol = Vol cOs 0,
Uo, = t, Sit) O, (28)

with

-- 1Vol =(-)

= -(1 + ). (29)

Taking terms O(f? Re) in the radial, azimuthal and axial mowentiin equations respec-
tively, leads to

- dvo dVo, +, 2U, __do

&0 - d-- .2 7..2 = d (- )
dU1l 1 101  1 _

vo dT I + Vo Po (31)
-7 dwo (32

0ol d- + IwT =Apo, (32)

whilst continuity leads to
I d Z

&' , ) - - + A , 0.(
On this system we may impose decay of all components of the solutionl as 7 --4 c, whilst oil
7 = 1, we may have only

v(,. = 1) = 0. (II)

The no-slip constraints on ul and •T are therefore violated, but these may be rectifiedi by
the inclusion of a thin boundary layer of thickness O(Q-½ Re-½) on r2

Specifically, we write

Y = (,.- l)f½ Re 0( 1), (35)

u1  = it,(Y)et + c.c., (3(m)

U = II, (Y)c 1 + c.c., (37)

and so

I- ipo(l), (3t)

giving

?h, - -iATJ(,(l)[l - c-' )/!].( )

We See thervfore, that oin the r - I = 0(1) scale, intriguilyl IitYhlt vis<,,lS andul inlvi.itl
effects are imlip)('talit siiuuiihtaiieously, and to a large deg'ree. i1llepf•'l tl' lx. III thle followir:-
sectiou we considher a nnllwlllr of uuutn1crical us~ults arising fromn lhe resillts (of 11's scclinNý
atllt go oi, to considher the limils A -- ý x) and A ---+ 0.

7II



4 Results and large/small A behaviour

The s•vstem (22), (25), (30)-((3-1) wai. ,solved usinig a cuiveir tional fmlirth ord er Hit,1, - olti a
meI hod. Results are shown in figure I for jTo() = 1)( r = I ), r = 1) o II ts). I,2'ir -

1)( ..... ). where the deet' dence of these qantI ites with IA is Shown.
We may make soeie further anal ytic progress by conwsidering thhe limits of large and small

A. Taking first A\ -- ;. then Iw (2-4)

• --, •- ', (42)

where
S- A(r,- 1) =0(1)1 (43U

i.e.
u2b -,A. 04)

The above implies the perturibation to the flow is confined to within a thin r - I O(A-)

boundary layer (although we must impose the restriction that A = o(112 Re• ) in order that
this layer remains outside the V = 0(1) layer discussed in the previous section). After some
algebra, it is possible to show that

1 V _ + O(A)) (45)

, (7 -0 + o(A- 3 ). (46)

A I k1 + 12 3 5'2- ) +O(A-4). (48)

(.omparison of (47) evalualed on I" = 0 with the corresponding numerical results of figure 1
shows good agreement as A increases. ln fort miatelv it is not possible to compare Th0(r =

with t)i,( y = 0) without further sub stantial algebra since fT),(" = 0) = O(A- 4 ).
The a!lernative limit of A -4 0 is slightly' more complicated. because two key radial

lengt liscales emerge. For r = 0(1). we have Ihat (2-1) reduces to

? -1 (49)

which fliterestinugly is thw azimlithal velcityv cinponent correspondiing to a liine 'vortex. i.e.
effctli velvy thec wvo-di imensioal resilut. There is also a large radial scale. H = Ar = 0(1). (\Ve
do have the res.t rictioli that A o(!Q) in or(der that over Ihec legh.,' lisaes ie, der considlerat ion.

I M) remiiaiis domoinant, over 1 ' ii (16)).
For = 0(1), tle solut lion develops in the forin

A• [Iolo A'u,(r) + 0(1)], )O)



with the leading order general solution taking the form

'o0 = Ai+ B~rlog r + Cr3 + . (51)
1'

For R = 0(1), we must consider the first two leading terms ini t he solut ion developm ent.
nlamely ao = A [Ilog A 0(H) + -,( H) + o((Iog,)')], (52)

The complete analytic solution for fo0 (H) and i,((R) does not appear possible, however it
suffices to consider the limit R - 0, for which

bo(R) AoR + 13oR log R + ( oR3 + -D-, (5:3)

whilst i, (R) (which is forced directly by the uý term on the right-hand-side of (25) takes
the form

ýI(R) "; A 1R+ BIRlogR+CIR3

+ D I R(log R)'. (54)
R? 4

Bomndedness constraints demand

C = Do = D= 0, (55)

whilst matching of (49) as i• -- 00 with (51) as R -- 0 requires

1/Bo - •-, (56)

B = -- (57)4

Further imposing the two boundary conditions on r= I yields

1 11
ýo = -r - -r logr - --. (58)

8 4 8.

This then leads to

-o I A log A log,, + O(A), (59)
2

Pl = -1/r'. (60)

Fortunately it is possihle to determine the leading-order term of p) without substantiial
algebra (and additional numerical effort), even though 7 is an order lower in log A than may
first he expected; equation (4.19) yields the result that pt(r = 1) --- - i as A -+ 0. a result

that agrees with our numerical results. However it is not. possible to ldet ermi Ie I)(r =1
witlhou t further substantial algebra and nummerical effort.

In the fol lowing section we go on to consider results for more general classes of Iwf,
di mensional flows involving closed streamlines, which are perturbed in sonie i hrve- (i mensionaal

IIIanl Ier)

9



5 The periodicity requirement and the associated in-
tegral conditions

ThIe re•mlt of aich ]or (1} ) 11 a , , view d its ri'ili.v fri Iioiii a (,oi(lit1m ,dI t, ,r ii, i 1 'v ,.,I I 1

tili, rei oll of closedi sirall~itiles of tilt, varilos physical flow uintlitities. It i- l,,"'f(',d htta~
iw' Filer eqluatiolis are. t l siii.elves.. [i()t *li!•ilhcit to erlfOrce perioticit i: an t 1 !rIat it
\iewvlpoilit is that thl( I.hler equations, are inal(,h to capture ithiie iiiai fw phhy.-ic,. I.e. o he
flow ,'urresplon(litog tzero waveiIII ber, i re'sult I hat is lit th, surijriii•g. Ihis poinit is ,vflially
Im)ortant ill tle three-lineiiniotal colt ext. andi is n1ow itivest iatte,.

We tVlnaY write '9). ( 10) ill t he form1}

U() A ý_ + U_ A A~j eI -e'V Ak~. t

where If is the 0(c) total lead. i.(e.

ft = ) + U," fl. 6(2)

and we have written the vorticit\v vector

-ý = ,'o + + 0(±(2) ((2).

Following Batchelor ( 1 ) and Blennerhassett (2) the work of this sect ion is most efficient lI
carried out in termis of ai coordiniate syst em based oin the wo-dirmeisioli al , undist lirhed
s<Ira ihfill intion. specifically iln t(erms of (H'. ,. ?here, k. represents tile I ream'flit- n lton of
the lunlistuirbed (ul') flow. and 1 is ortlhogonal toI u and -" z rmains the axial coordinate.
If tile un distu lrbed flow uo is i rrotatiuinal. thwn ýil may he takein to be tite standard velocitv

p)otenitial 0. The hfllriit,'simal 1ine element is d-2 h dZ.) Ilere, 112 is tihe coordinate

metric. which in the, case of an irrotational tic is nmerelv 1I/, and qo,: = 1u0.
Rl-eferred to tie(, {t-. .. z) coordlinate ',vsteiei. the velocity vector imiay be written

U = (W'coA-z,qo + (uicosz. (csin Az) + ((2), ((-4)

alld tilie pre'Sllsre as
P = 1)4) + o ,s A.: + 0( 2). (65)

Rleferred to the ( co,. .- ) to,,rdillate sysweml, we n aya' write the vorticity terms as follows

(0. 0,.(/o )

111 (i6)

slatn Az.,,& sin ,\z,,•:" cos Az)

(sit nA - ( + Aon: ),siin A -- ,\ -- q1 ,)w,)

qt c;;s A: [01 112) (6+(01

102



We may then write the three conmpouicts of (Wt) iII tlII( followinlg ftin,

,2 h 2  ,o h , ' •ý2 ,

I 0j) Re 0

/12 d " h

+ RRe - A,)I - qO

lL' _ AA Re-' [0 a)f~\-- + -(t,2h-2 ) - - 7-it

The continuity equation, in terms of these variables is

9 (h ,2 v) a + -a.a i)ý qo q0

If we integrate each of (68)--(71) around a complete circuit in (lying entirely within a region
of closed streamlines), then periodicity of the flow demands

I { e h 2 aj

q- q o q o i ,

Re-' [w 3  12}
q(g [ - A- h•21 , (72I

{WO + Re-' Awl - qoJ /I h 2 d 0. (,7:3)

+ - (h2L •2) h2d = . (74)t qo h .2 0 ?",

These results are quite general, and indeed exact within thie franework of Ihe lii c .iAsed
N avier Stokes equations (9), (10). If we now direct our at itention oil t he Ir ,,I'l di n ,I,•.i i hIcredt
earlier in this paper, then uo is irrotational. aid so iII lIii with our coimi ,ivi .ts regarding
above, we can write

1 kL2.i + +2U d C 0. (75)
'q 2 qk(nj,

+ 0 ( - , -. (77

Note that tlic t result of latc hehti (1) is re rirevei f '•(mi (76) 1,%V-,lh ig, A W .

hI



At this stage we can parti firm the solhItMio developlment of Sect oio 3. Equ at ion 77)

above strongly sugge'sts that -'2 = 0 (Re), which ini turn suggests that i, anid/or 1v ii ii

also be O(fi ). This is partlv confirmed by (75). Indeed, it can be shown that our soli itions

given in Sect ion :3 do satisfy the above condlitions, whinch clearlv illustrat e Ilieh iii alil ('e (of

viscosity on the r - 1 = O(1 ) scale.

12



6 Conclusions

sublstan~tial (0( He)) response' ill t it' t Ilirte veloctyet cot tipotielts.ý ini lihe Ihillk ,I' tI he t' I lli

effect is cotifirtild ily I lie antalysis oif Sect Wi 5 inl whiti I Il-crt't' tigrill citildii oil>w \w! '.1 ii % ''d

t(analogou1s to tlit stolit ary inletgral etitidition in thai livhns (1) 1 \o ilinwttsiinld \\' k. All
tie( ind~icationts arc( that this wassive response wit ihte'ujntsoi1t\ will w;le a t~iIclic

ieatilr( of simfilatr flows. It is likely t hat the results tif thins palmi'r haive riicu'oiis i

iniportant p~ractical appljeatjints, perhaps the mint importa"ii 4 whitch eing I liii of highui

lift aerofojis.
Iliis paper lhas deliblerately fotwisei on the large rotabuot ralte problemiOA (e.- -- x

Hlowe'ver t lie ext renilyinipor ant regtinic of Q z 0( 1) rt'tinahn to ble st iihieni lTO tw~in",

invtolves a lilildiibe of a~llit iotal ques iots. ImThaps 11wi bey wmai tIli WK;~ 0" li at' l d tsof ci

5(11111ion its therkclst't strt'ainlineregio of iltv base (I wo-dintuetsiotaia) flowv is exited1 . It ci itlif

well lit thtat s~tflt fort of tinild diseonthitititi ex~ists. for which a th lu1  healr layer won1'd Iii'

requlired. Tuis whole probldeii would be it nollt rivial n"nrictieial 1111lert aking. hult it s i It)em
expected that t he O(He) Moeltyct scales mill persist. Fyitally we have ittipjitilt ir asinleil

here that Q 71 O()( ely u posit ive' integer. alt liotigl if t his condiiitiou is, lelaxc(L it se''uns
likel that Ilth' solution will bev modifid. lnit ill a relat ivelY ittinot. Inan Her..

=li 0(1) proliltri at I his stage. Nvon hi appear Io Iliea fortnidaldcietask. qutit le i l
invtolvinig a soiltutioni (f thle full] Naviti Stokes t'quiat iots. lFinuallv. adlt hotighi our tudy n has
ctticen;tratced ton siitiisonal distin-rantices tn thit axial ilieititit. it is of (nmrsv~ st N~igt~.i irWoni
in exted ovt' ideas to iioi-hit' irio axWia diii iranics usng staiitlarii t rynitin Mt lcinluutn'
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